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ABSTRACT

In transmission and receiver design far radar ar cammunication systems whase naisy
channels contain Gaussianly fluctuating multipath, it is convenient to adopt a re-
ceiver autputsignol-to-noise ratio (SNR) criterion even though best errar perform=
ance is actually sought. We investigate the loss (expressed as an equivalent trans-
mitter output reduction) attending the use of this criterion. It is shown that when
a Karhunen-Laéve analysis af the signaling system yields a largest eigenvalue that
is suitably smoll, this lass is minor or negligible at all levels of error probobility.
Furthermare, it is eosily passible ta have a chonnel-perturbed tronsmission that is
sufficiently weak and incoherent for this eigenvolue to guarantee low loss, yet not

sa weok that high autput SNR (gaad errar perfarmonce) is precluded.
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OUTPUT SIGNAL-TO-NOISE RATIO AS A CRITERION
IN SPREAD-CHANNEL SIGNALING

I. INTRODUCTION
A. Background and Summary of Main Results

It has been a basic tenet in certain radar astronomy detection studiesi’2 that system
performance is adequately measured by a suitably defined receiver output signal-to-noise ratio
(SNR), where the receiver is assumed to perform a quadratic operation on the incoming signal
that reduces it to a single numberd It is further assumed that the cascaded multiplicative (Gauss-
ianly fluctuating multipath such as exists with a radar-astronomical target and which produces
tire- and frequency-spreading) and additive (white noise such as thermal or shot-effect noise)
channel disturbances are independent, zero-mean Gaussian processes of knowd§ correlation
functions. One then readily finds the explicit quadratic-form receiver whose output SNR is the
greatest and which has a straightforward engineering realization as a kind of radiometer.1_3
With the receiver thus determined, the functional dependence of the system performance on the
transmitted waveshape and energy can be exhibited as measured by output SNR. The studies
conclude with the problem of optimizing the transmitted waveform for a given available energy,
still according to the SNR criterion and also assuming receiver observation over all time. A
difficult nonlinear integral equation is encountered, which has been solved only in the particular
case where the shapes of the time- and frequency-spreading profiles are Gaussian curves. (The
best fixed-energy transmission in these circumstances is found to be a Gaussianly shaped pulse
having a nominal duration that is the geometric mean of the time spread and the reciprocal of
the frequency spread, and performance is shown to become worse as the product of the time
spread by the frequency spread increases.)

What progress has been possible, as outlined above, is due largely to the mathematical
nicety of the quite adhoc SNR criterion, the assumption of a quadratic-form receiver, and the
Gaussianness of the channel disturbances. A more conventional and useful practice in radar
and binary communications, where decisions have to be made, is to rate system performance

in terms of the pair of probabilities that relate to the two types of error that can be committed

T That output SNR is a satisfactory performance measure is widely held in radio c:stronomy.3 In this older field the
term "deflection,” defined as the rotio of the increase in mean output produced by the signal sought to the output
standard deviation in the absence of signal, is equivalent to the square root of our output SNR.

} The radar astronomy detection system is equivalent to a binary communication system that employs on-off signal-
ing over a fluctuating multipath channel.

§ For this discussion, the absolute intensities of the channel disturbances need not be known.



in deciding between "target present" and "target absent" in the radar situation, or between the
two possible transmitted symbols in binary communications. By adopting such an error-
probability criterion while removing all restrictions on the form of the decision-making receiver,
it is found for the above channel that the optimum receiver can be realized as a quadratic-form
processor followed by a decision operation which is triggered by the value of the processor out-
puti’2 (see Sec.II-A and Appendix A). Moreover, the particular error-probability criterion

that is chosen has no effect whatsoever on the processor and determines only the decision level.
Thus there is a clear degree of correspondence between the optimum receivers obtained under
the SNR and error-probability criteria.

In general, however, the detailed specification of the quadratic-form processor in the opti-
mum decision-making receiver differs from that of the SNR-maximizing quadratic-form receiver,
being implicit in the sense of involving the solution of an integral equation and possibly being
relatively hard to implement as well. Likewise, the best fixed-energy transmissions under the
two kinds of criteria ordinarily will differ, the one that optimizes performance under an error-
probability criterion being at present exceptionally difficult to determine.

The purpose of the present study is to provide proof, based on quite general yet exact error-
probability analysis, that radar and binary communication systems can safely be designed for
spread channels according to the SNR criterion, even though best error performance is the actual
goal, as long as "low energy-coherence" (LEC) conditions prevail in the channel. This is sig-
nificant in that, under these conditions, one can now have full confidence in using the relatively
tractable mathematics of the SNR criterion, without having to face the worry so frequently met
in trying to relate output SNR to error performance — that of the lack of knowledge of the output
probability distributions.

Specifically, the first main result of the present study of a dual, ! spread-channel signaling
system is that if, under LEC condititions, the quadratic-form, error-optimum signal processors
that appear in the receiver are replaced by the SNR-maximizing generalized radiometers, very
little increase in the transmission amplitude (keeping its waveshape unchanged) is needed to
overcome the ensuing degradation in error performance.§ It will be shown in Sec.III-A that the
necessary increase is upper-bounded by a measure of the degree to which LEC conditions prevail,
and that this upper bound does not depend at all on the values of the error probabilities or on

whether a radar or a binary communication system is considered.

T Qur LEC condition [made quantitative through (2. 5)] involves, on the one hand, the incoherence produced by
the time- and frequency-spreoding of the fluctuating multipath, and on the other hand, the temporal behavior of
the ratio of the average received signaling power to the noise spectral density. The more time- and/or frequency-
spreading that there is, the more energy can be transmitted while LEC conditions still prevail; in fact, signals
having infinite duration and energy can be sent over the channel without violating LEC, as shown by the bound
(2.7). Consequently, LEC does not per se preclude high output SNR or low error probabilities. [See also the
remarks preceding (2. 19).]

1 This is a twofold iteration of the single-channel system considered in Refs. 1 and 2 and Appendix A, and is intro-
duced in order to model either a radar system or equivalent on-off binary communication system, or a binary com-
munication system of the more modem kind where energy is emitted with either of the symbols to be conveyed.

§ To give an example in the context of radio astronomy, let us suppose that according to some error criterion, and
with a white-noise background of 100°K, a spectral line of an arbitrary width and a pedk density of 1°K is just
detectable using a SNR-maximizing radiometer. Then by (2.8) and the receiving loss bound established in

Sec. llI-A, 0.99°K is a lower bound to the peak density of an identically shaped line that would be detectable
with the optimum receiver, assuming the same observation interval for reception. The game hardly appears worth
the candle, and there would be even less to be gained were the bockground noise to exceed 100°K.,



That there is such a small effective difference in performance under LEC conditions is not
surprising, considering that the error-optimum processing approaches the SNR-maximizing
processing as the channel noise intensity becomes infinite (see Sec.II-B). In fact, Bello4 has
already demonstrated this small performance difference, making the now unnecessary approxi-
mation that the processor outputs are Gaussianly distributed.

The second main result proceeds directly from Pierce's finding5 that the error probability
for optimum reception of binary symmetric signaling over spread or diversity channels can be
expressed as a real integral involving the system eigenvalues (see Sec.IV). For this situation
only, it will be shown that the error probability of the error-optimum receiver can be bounded
above and below by expressions involving the maximized output SNR that is attained when gen-
eralized radiometers are substituted for the quadratic-form processors appearing in the optimum
receiver. Under LEC conditions these bounds are close in terms of decibels of transmission
amplitude (in fact they are close in an absolute sense under extreme LEC conditions). By taking
this result together with the low receiving loss established as the first main result, we conclude
that one can safely proceed to design both transmission and reception on the basis of the SNR
criterion, in a LLEC-spread-channel, binary symmetric communication system, That is, we
can be sure that the overall "design loss," defined in terms of an cquivalent reduction in trans-

mission amplitude attending the adoption of the SNR criterion, will be small.

B. General System Description

The system to be analyzed consists of a duplicate pair of the radar or on-off communication
systems treated in Refs. 1 and 2, operating in reciprocal fashion over a pair of noisy, fluctuating
multipath channels that are identical but statistically independent. Specifically, a single bit of
information is sent by transmitting either a known narrow-band waveform Re {,“I(t) eiwot} over
one channel and nothing over the other, or vice versa.l The transmitted waveform is converted
by the fluctuating multipath of its associated channel into a (generally nonstationary) zero-mean,

>

narrow-band Gaussian process z(t) having the correlation function

1
¢, (t,7) = 5 Re

55 At — A) V(1 — 1) 2 (@, A)

><exp[i(w+wo) (t —7)] dwdA (1.:41)

where ® (w, A) is the scattering function of the fluctuating multipath. This (real, non-negative)
function}::lescribes the power spectra (in w) of the Gaussian fluctuations ("y" processes) that
produce the frequency spreading and that occur with mutual independence at the various time-
spreading multipath delays (in A). Setting 7 = t and integrating over all t in (-, «) to obtain

the total average received signaling energy, we find

E, - [% 5_” ()2 dt] [55 2 (w, ) dw dA] (1.2)

T The two channels might be carried by a single propagation medium if wide-deviatian frequency-shift ar time-
shift keying were emplczyed.6



so that the double integral of the scattering function is equal to the ratio of the total average
received signaling energy to that transmitted.

Additive white Gaussian noise is injected into each channel, following the fluctuating multi-
path disturbance. The added noises are independent, and each is of spectral density No, speci-
fied on the basis of a physical, single-sided spectrum measured in cycles/second.

In order to have a system model that will serve equally well either for communications
employing balanced signaling of the type just described, or for radar or on-off signaling, we
introduce the respective options of either making both channel outputs available to the receiver,
or of allowing it to observe either channel output but not both. In the former or "communication"
option, the receiver observes, at one channel output, a sample of the signal-plus-noise Gaussian
process having correlation function (pz(t, T) + Noé(t — ‘r)/Z and, at the other channel output, a
sample of a white-noise-only process whose correlation function is Noé(t — 7)/2; the receiver is
called upon to decide which channel output is which and hence to decide over which channel the
transmission has been sent. In the radar mode the receiver decides to which of the above two
Gaussian processes its observation belongs, and hence judges whether or not there has been a
transmission over (or target in) the channel whose output it observes. This receiver description
applies both to the optimum receiver now to be discussed and to the suboptimum receiver next

considered.

II. OPTIMUM AND SUBOPTIMUM RECEPTION
A. Error-Optimum Reception and a Pair of Tests for Low, Largest Eigenvalue

Whatever observations may be available to it, the binary-choice receiver that achieves the
best error performance, regardless of the details of the particular error-probability criterion
adopted, is one that bases its decisions on the value of the likelihood ratio taken over all avail-

able observations, or on any monotonic function of this ratio such as the natural 1ogar‘ithm.7

For the radar option the logarithm of the likelihood ratio is that of the ratio of the probability
measure of the single observation under the "transmitter on" hypothesis to its probability meas-
ure under the noise-only alternative. This logarithm can be the processing output of the optimum
radar receiver, its value then determining the decision.

For the communication option the likelihood ratio is a similar ratio of probability measures —
this time taken on the dual channel-output observation. By virtue of the assumed channel in-
dependence, this ratio factors into the product of a pair of likelihood ratios taken on the individual
channel outputs. For either observed output, the hypothesis that there has been a transmission
over its associated channel but not over the other, and the converse hypothesis, are equivalent
to the radar hypotheses of transmitter "on" and "off," respectively. We therefore conclude,
recognizing that "on" in one channel necessarily corresponds to "off" in the other and vice versa,
that the optimum processor output for the communication receiver can be formed as the differ-
ence of the logarithm-likelihood outputs from a pair of optimum radar processors that operate
individually on the channel outputs.

As a matter of mathematical convenience, and because, as earlier mentioned, we are free
to choose any monotonic function of the likelihood ratio for the optimum processing output, we
shall usually add an arbitrary constant to the logarithm of the likelihood ratio and shall multiply

it by another (positive) constant as well, specifying the result to be the optimum processor output.



In a radar situation such shifting and scaling merely requires a compensatory resetting of the
decision level, a detail which need not concern us for the purposes of the present study. Such
modification is likewise permissible in the pair of optimum radar processors whose output dif-
ference has just been demonstrated to be the optimum communication processing output, as long
as both radar processors undergo the same modification. In binary symmetric communication
systems, in fact, where the decision level for the logarithm of the likelihood ratio would be set
at zero, the decision level is obviously left unchanged by such addition or scaling.

Drawing on the Karhunen-l.oéve exposition of Refs. 9 and 10, it is found in Appendix A that

we can write for the output of the optimum radar processor (modified as above) that operates on

the signal wk(t) received over the k'!' channel:
w0 o~ 2 2
AAw.T , +w.T )
o _ i ki jk2 . _
do = ) L5 k=12 . (2.1)
j=0 L
Yor radar, df or dzO is the optimum decision quantity; in communications it is d; - df. In (2.1),
Ty N iw t
W, ., = «/Eg w, (t) Re {¥.(t) e dt
jki _1/2 k j
(2.2)

L

> dt

= T/2 5
W, = N2 g w, (t) Re¥.(t) exp[iw t +
jk2 _r/2 k ] o

where we assume without loss of generality that the observation interval is (—T/Z, T/Z). Also,

N
>

(2.3)

w
f
o

N
and the X, are equal to one-quarter the bounded, countable, non-negative eigenvalues associated

with the orthonormal eigenfunctions Jj(t) of the homogeneous linear integral equation

T/2 [ o )
g g At = M7 —A) &_(w, A) exp[iw(t — 7)] dw dA
-T/Z do S

st (2.4)

o3
|-

v, = 4X. 0, =
X me dr Jll)J(t) B

In (2.4) each eigenvalue is counted by the number of linearly independent eigenfunctions associated
with it — frequently there will be just one.

The largest eigenvalue (making the quite unessential assumption that there is only one eigen-
function having this eigenvalue) of (2.4) is given the index j = 0. The noise-scaled largest cigen-
value BO = ZXO/NO is of prime interest to this study, for it will be shown in Secs. Ill and IV to set
limits on the design loss associated with the adoption of the output-SNR criterion.

Although it is generally difficult to determine 3, exactly, all that is really required for low
design loss is that an upper bound to BO be small compared to unity. Such upper bounds are given
in Refs.2 and 4 in terms of gaz(t, 7), the correlation function (1.1) of the channel-perturbed trans-

mission (less noise). A key bound is



T/2

2
Bg& 5 max S\ e (1. 7) |p_(t,7)] dT . (2.5)
0% N, _T/t<T/2 J-1/2 "2 =

Here pz(t, T) = cpz(t, T)/W is a correlation coefficient whose magnitude, an index

of the coherence of the (noiseless) channel-perturbed transmission, cannot exceed unity.
Observing that the right side of (2.5) involves a time-integrated interplay between the rate

of arrival cpz(r, 7) of average signaling energy and the signal coherence as measured by |pz(t, 7|

»

we now define "low energy-coherence" (LEC) conditions to exist if and only if the right side of

(2.5) is small compared to unity.t [Note: In Ref. 2, LEC is said to exist if either of a pair of

bounds, one of which is that of (2.5), is small.]

Clearly, (2.5) involves detailed knowledge of X(t) and &_(w, A) through (1.1); we now present
another boundI that requires much less information about thb:e transmission and the channel. To
obtain this new bound we multiply (2.4) on both sides by ﬁj"‘(t), set j = 0, and intcgrate on t from
—T/2 to T/2. Using (A-13) and regrouping, we find

00
4x_ = g5'¢y(w,x)dw da
-0

(=]

T/2 P 2
S‘ Tolr) X1 =2y e ¥Tdr
/2

T/2
< w max 8, (. 3] AR CER GRS

-T/2
00

X A(t — A) dtdr S\ exp [iw(t — 7)] dw

-00

& T/2 . 2 2
=2m S\ da [max ¢ (w, }\)] S\ [lPO(‘r)[ | X(r = 2| < dr
-0 w y -T/2

21 0 s 2
<2w[max|%an ]S‘ [max@ mgqux‘g [t [ = dr (2.6)
t =00 w y T/2

and again by (A-13), the second integral in (2.6) is unity. Therefore,
No T 2 *
AOF 5y r |
BO > = )\0\< > [mtax | Z(t) | ] S\-w [mjx <by(w, A)] dA (2.7)

and we see that if the channel frequency spreading is accompanied by a peak-power limitation on
the transmitter, all the Bj may well remain below unity no matter how much transmitter encrgy
is expended. When the transmission modulation X(t) is a constant, we may precede the steps in

(2.6) by integrating over all A; a tighter bound is then obtained in which max is moved outside
w
the integral in (2.7). This special bound can be expressed simply in terms of the (physical,

single-sided, cyclic frequency) spectral density S(f) of the signal received in the absence of noise:

T Just as low energy-caherence guarantees By << 1 thraugh the inequality (2.5), ane can in turn bound the right
side af (2.5) by 4v, if it is knawn that, far any t, vN, exceeds that fractian of the tatal average received

signaling energy E_ lying at those T-times far which t, D] > vNg/E,.
gy £z ly Pz a/Ez

1 This bound has already been faund by Bella,# who assumes discrete rather than cantinuaus multipath.



IXO < max S(f) . (2.8)
2
f
This bound, which is well known, actually becomes an equality if the observation length T grows
infinite.
If the observation interval is (—«, ©), a companion bound to (2.7) may be found by expressing
Jfo('r) and X*(r — A) in the first line of (2.6) in terms of their respective Fourier transforms

\Ilo(w) and X(w):

4%, = §§ 2 (@, A) dwdx (2m)~2 §§§ ¥olw) X(w')

2
Xexp[-iwT + iw't +iw' (7T —A)] drdw!dw!!
) " 2
al - _. 1
= S\S tby(w, A) dw dA ’(er) L S\ \I/O(w —w") X(w'") e e * 1 dw!'!
-0

-00
Then following a development paralleling that of (2.6) and using Parseval's relation:
. 2 * 2
S\ |\Ilo(w)| dw =27 S\ |¢O(T)| dr = 27
-0 -0
we find

Xo & % [m(ix |X(w)|2] S:oo [m}z\ax d>y(w, A)] dw . (2.9)

Thus channel delay spreading together with a limit on the energy spectral density of the trans-
mission can also act to prevent the Bj from exceeding unity.Jr

Also for infinite observation interval, we can obtain by proceeding from the first line of
(2.6),

max ¢ _(w, A)

Ao - Yo " Eg w, A (2.10)
2T TrNO\ N, 2 ’
[] & _(w, ) dwda
e 4

where E-Z is the total average received signaling energy. This bound has been given in Ref. 2
and shows an interplay between the average energy-to-noise-density ratio and the time- and

frequency-spreading.

tThe bound (2. 9) is actually valid for any observation interval (-1/2, T/2), since a Sturmian Separation Theorem”
(called to the author's attentian by the late Dr. M. J. Levin of Lincoln Laboratory) implies that the largest eigen-
value of (2. 4) is a nondecreasing function of T. Viewed in terms of Bello's duality theory,‘z (2.9) is merely the
Fourier dual of (2.7).



B. The Generally Suboptimum, SNR-Maximizing Processor

As pointed out in Appendix A, practical implementation of the processing (2.1)-(2.2) requires
solving the generally difficult integral equation (A-10), We note, however, that as NO —~ o and
therefore gy ~ 0 in (2.1) (all the other BJ. - 0 as well, since By is the largest), dl? approaches

the explicit limit:

= £y 2
5= T S, e gg W) wol™) oo (L, 7) dtds ; k= 4,2 (2.11)
k ~ & Wik T Vike g P e h : : : :
=90 -T/2

This is obtained from (A-9)-(A-10) and the remark immediately following (A-10). Because the
processor (2.11) involves the correlation function ¢z(t, 7) of the fluctuating-multipath-perturbed
transmission quite explicitly, and in fact has been realized specifically as a generalized radiom-
eter in Refs. 1 and 2, one is tempted to substitute it in lieu of the optimum radar processor
wherever the latter is employed in the receiver. A loss in error performance is generallyT the
cost of this convenience, but one may expect the loss not to be severe when BO is small. A major
purpose of this study is to confirm this expectation by placing an upper limit on this loss in terms
of an equivalent transmitter output reduction, a limit that involves BO and approaches zero with
Bg-
The explicit processor (2.11) has the significant property that it achieves the maximum out-
put SNR among all processors of the broad linear-quadratic class:
T/2
P [w(t)] = SS [aw(t) + f(t)] [bw(T) + g(T)] K(t, 7) dtdT (2. 12)
-T/2
where a, b, f(t), g(t), and K(t, r) are quite arbitrary but not random. (This is so whether or not

the signal received in the absence of noise is narrow band.) To show this, we make the expansions

in the eigenfunctions of (A-2):

K,y = ), a ¥ (t)d (1)
m, n=0
(=) f g (1) - Tt} (2.13)
m=0
gy = ) g ¥,
m=0
whereupon we have, using (A-1),
Pwit)]= ), a_ faw_ +f_)(bw +g) (2.14)
m, n=0

T Should there be just a finite number of B;, all of equal value and hence equal to B, comparison of (2.11) and
(2. 1) reveals that the processor (2. 11) is in fact optimum. In general, however, (2.11) is suboptimum.



with the e independent, zero-mean Gaussian variates derived from w(t). The mean value of

o) — e
P [w(t)]) is seento be ab Z a w2 + z a__f g, sothat by (A-6) the change in the
mm  m mn m®n
m=0 m, n=0 o
mean output that occurs when a transmission is sent over the channel is equalto ab £ a A

mm m’
m=0
where the Am are the eigenvalues of (A-2), which are shown in Appendix A to occur in equal pairs
for narrow-band situations. It is straightforward to find the variance of P [w(t)}], using the fact
that the fourth moment of a zero-mean Gaussian variate is three times the square of the second

moment. Again with the help of (A-6), we find that, when the received signal w(t) is noise alone,

— 2 abNOZ
P [w(t)]* — (P [w(t}]) ( 2) Y a_{a_+a_ )

m n
m=0 "n=0
abNO 2 N
< ( 2 ) amn(amn i aan)
m, n=0
(abN )2
= S (a +a )2
8 L mn nm
m, n=0
(abN )2 2
g — ¥ a® . (2.15)
m=0

Thus the output signal-to-noise ratio, defined as the square of the mean output change divided

by the variance for noise alone, is found to have the upper bound:

R,< — 20 . (2.16)
N z Z a 2
o mm
m=0
i )
By the Schwarz inequality thce upper bound of (2.16) is in turn upper-bounded by (2 ’\02) = 7\1'1'],
m-0

but reference to (2.15) shows that this bound can actually be attained by R__if we choose amm

, a =0 for m # n, fm =0 = gm for all m, anda =1 = b, Therefore, by (2.14), maximum

A
m mn -

2 . . .
output SNR is achieved with the processor that forms < A W o which is recognized as the
m=0
same sum as in (2.11) when wk(t) is substituted for w(t) and narrow-band conditions are invoked

to give pairing of the eigenvalues.

Having established the maximum-SNR property of the processor (2.11), we note yet a further

SR 2 S \2
S o (t,t)ydt] < 2 . (2.17)
T2 o

upper bound to its output SNR:

2

(2 ] -2

=18

2 2
R=-% AL <

7
No 0

[oo
4.5

N

O v

m



Here we have used the Mercer expansion:9

o0

e LT = Y A Y)Y ()
m=0

<t 7L

5
- (2.18)

T
2

and, setting t = 7, have integrated both sides of (2.18) over (—T/2, T/2) with the help of (A-3).
For the narrow-band systems actually under consideration, the fact that the eigenvalues appear
in pairs means that the quantity on the right of the first inequality in (2.17) can be halved, giving
a tighter bound.

Thus we see from (2.17) that a good output SNR requires, not unexpectedly, a good ratio of
total average received signaling energy to noise density. However, we have also seen by (2.10)
how the latter condition by no means need imply that (in narrow-band situations) BO = 2'}TO/N0 =
2}\0/NO be large. Hence, as Bello4 has observed, we can certainly have weak-signal situations,
as for example are practically the rule in radio astronomy, where BO is quite small while the

output SNR for a radiometer detector is high. To test situations in which it is suspected that BO

o« o«
may in fact be large, one can use the simple lower bound A, Z Anz T }‘ri’ leading with
m=0 m=0

the aid of (2.17) to

B, %}‘—0 > B (2.19)
o (Ez/No)

(This can be tightened, if desired, by replacing E—z by the average signaling energy received just

in the observation interval, rather than over all time.)

Aside from its use in (2.19), why are we interested in the value of the maximized output
SNR? — especially since some doubt is cast on its usefulness as a criterion by the fact’ that the
error-optimum detector (2.1) or (A-9) must generally have a lower SNR than the suboptimum
detector (2.11). The answer is that for binary symmetric communication over the dual channel
and error-optimum reception, it is possible to obtain (as will be shown in Sec.IV) bounds on the
error probability in terms of this maximum SNR R — bounds that are close in terms of trans-
mission amplitude when BO is small. Furthermore, through the bound established in Sec. III on
the effective transmission-amplitude reduction associated with the use of SNR-maximizing proc-
essors rather than ones that are error-optimum, we can also bound the error probability of the
suboptimum SNR-maximizing detector in terms of its output SNR. Whereas exact error prob-
abilities are difficult to determine for either type of reception, the maximum attainable SNR is
relatively easy to evaluate; squaring (2.18), integrating t and 7 over (—T/2, T/2), and using

(A-3), we find (remembering that in narrow-band situations there are a pair of equal }‘m for each

m
o0 o0 ’I‘/Z
2 2 _ vy 2 2 2
R = F E Aa = Lu g = FZ S“S‘ ¢, (t Tydtdr . (2.20)
o m=0 m=0 o -T/2

T As a paint af interest, Rudnick '3 has faund that with a definitian af autput SNR that differs fram the ane given
above, maximum SNR is achieved amang a braad class af pracessars (nat just mixed linear-quadratic) by ane whase
autput is a fairly simple functian af (2. 1), the errar-aptimum autput. (Sebesfyen14 actually nated this result
earlier, attributing it ta R. Hines.)
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C. Derivation of Error Probabilities for Optimum Reception

In order to determine error probabilities for reception that uses the optimum processor
(2.1), we need to know the statistics of the observables wjki and wjk2 that appear in (2.1) and
(2.2). It is established in Appendix A that the wjki’ wij’ j= O~ 1,2,..., k=1or 2, are mutually
independent, zero-mean Gaussian variates having variance akAj + (NO/Z), where ak is unity or
zero depending on whether or not there has been a transmission over the kth channel. Those
variates for k = 1 are also independent of those for k = 2 by virtue of the assumed independence
between the channel disturbances.

Multiplying by 4/N§, we obtain from (2.1),

5 B.(1+ a, B.)v.
440 j i b | S -
. do = ), TR g =12 (2.21)
o j=0 J

where the ij are mutually independent for all j, k, and each is the sum of a pair of independent,
squared Gaussian variates of zero mean and unit variance. Each Vik is thus distributed as a

central chi-square variate of two degrees of freedom, and they therefore all have the probability

density
(3) o e Gk
p(v) = (2.22)
0 4 v <0
and the characteristic function
S o iy o F=aEd . (2.23)

In radar we deal onlv with d , k=1o0or2, and announce that there has been a transmission
over the ktP channel if d exceeds some decision level DN /4 otherwise, we decide that there
has been no transmission in that channel. Here we are 1nterested in the probabilities of the two
types of decision error that can occur — PI?/I’ the probability that the optimum detector misses
the transmission because d chances not to exceed DN /4 even though a = 1, and PF’ the prob-
ability that there is a false alarm because d happens to exceed DN /4 even though a = 0.

In dual-channel communications as ear11er described, an error is committed if (dzo - dio)
fails to exceed the decision level DN02/4 when a, = 178y, = 05 OnRYif (dzo — dio) exceeds DN02/4

when a, = 0, a, = 1. Since the vjk of (2.21) are statistically identical as well as mutually inde-
pendent for all j and k, a simple argument involving an interchange of the k = 1 and k = 2 indices
shows that the probability for the latter type of communication error is the same as that for

(dZO - d;)) being less than ~DN5/4 with a2 =, a, = 0. In particular, the two communication
error probabilities are equal when D = 0, which is the setting used for binary symmetric com-
munications. [There is zero probability that (dZo = dio) is exactly equal to the decision level.]
Therefore, in the communication situation we need consider only the a, = 14 a, = 0 case, but

must deal with all real values of D.

In terms of its characteristic function elpd, the probability that the decision quantity d [which
is d for radar, (d — d ) for communications]) fails to exceed DN /4 is the same as the prob-

ab111ty that it is less than DN /4 and is given by the contour 1nteg1 al

1.



2 2 S
DN DN . .
p<d< 4°> - p< 4°> o () 5 (—i)~t e P exp [ﬁ*}] du . (2.24)
o N
(o]

Here C is a line parallel to the real axis and displaced from it by any positive imaginary amount
that is less than the smallest positive imaginary coordinate of any singularity of exp[14pd/N 1,
integration being in the direction of increasing real coordinate. In all cases, 4d/N is, by
(2.21), a weighted sum of the independent variates Vs SO that its characteristic function is the
product of the characteristic functions of the individual terms of the sum. The individual charac-
teristic functions are given by (2.23) with Cjkp. substituted for u, where Cjk is the weight asso-
ciated with vjk'

Referring to (2.21) with a, = 1 and using (2.24), we find for the radar situation,

- -iuD
Pip= (2 g e : (2.25)
C R .
1 (—iw) T (1 —2iB.p)
30 .
Similarly, with ay = 0,
-inD
_pO_ -1 e dp
1 - Pp = (27) S‘C — ZiBJH ] (2.26)
2 (—ip) I [1 - _]
: T+
=0 %

The contours C1 and C2 can be any lines paralleling the real axis and having a positive imaginary
coordinate.

A eloser relationship between (2.25) and (2.26) can be established by ehoosing (‘1 to have an
imaginary coordinate that is larger by i/2 than that of C,. Then making the substitution

w = p' —i/2 and dropping the prime, we have

- - ‘—ip.[)
1—Pl?,=(27r)1eD/2 H 1+ﬁ]§ CA— . (2.27)
j=0 Cicip—1/2) 1 (1 - 2ig.p)
1=0 !

The similarity of the contour integrals in (2.27) and (2.25) is a feature peeuliar to optimum

processing. By differentiating (2.25) and (2.27) with respeet to D, the ratio of the probability

density of dl? for ay = 0 to that for a =1, evaluated at dl? = DN02/4, is found to be just c"D/2
e

o 1+ Bj). This is a result of d.° being monotonically related to the likelihood ratio and hence

: k

i

being a sufficient statistic, so that it is a measure of the likelihood ratio taken on its own prob-
ability distributions under the two hypotheses.ﬁ’16 As we shall see in Appendix B, this feature

of optimum processing can be quite useful.
For the communieation situation the output from the optimum processing is d = (dé) - d?),

and from (2.21) and (2.23) we find for a, = 1, a, = 0 that the characteristic funetion of 4d/N§ is:

& 1
“ 2iB.u 1”
exp[14“d] H (1 — 2iB. pL =1 [1 + M—JB—)] (2.28)
5=0 i

N
o
Substituting (2.28) in (2.24), letting p = (i + 2u")/4 as suggested by Picrcc,5 with u' running along

the real axis as a permissible contour [the smallest positive imaginary coordinate of a singularity
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being i(1 + BO)/(ZBO)], and then dropping the prime, we have for the probability of error at the
decision-level setting DN02/4,

00

exp [—ipD/2] dp . (2.29)

0
-1 D/4
o) = (2™t P4 TT 4| =
. U B 2 2
=0 (7 —iw) I [(1+8./2)" +(B.w)]
=0 J J
J
When D = 0, the integral in (2.29) becomes purely real with limits (0, ), this is Pierce's result,5
which again is a consequence of the processing optimality, and which will receive further atten-
tion in Sec.IV and Appendix B.

III. AN UPPER BOUND TO EQUIVALENT LOSS IN TRANSMITTED ENERGY
ATTRIBUTABLE TO THE USE OF SUBOPTIMUM, SNR-MAXIMIZING PROCESSORS

A. Development of the Bound

In Sec.II-B we introduced the SNR-maximizing processor (2.11). This processor has the

merit of being quite explicit in its specification, but suffers from generally being suboptimal.

s

F

will in general be higher (and certainly will never be lower) than that for
S .. =0

M> PM). (It follows that the

same statementamust be true with the false alarm and miss probabilities interchanged.)

When it is used in a radar receiver, for example, the false-alarm probability P
s
M
the optimum detector operating with the same miss probability (P

for a given

miss probability P

Similarly, in the communication situation, let us suppose that with either the optimum or
the suboptimum processing there is the same probability of mistaking "off" in the first channel
2 2 0). This is

and "on" in the second (a; =0, a
accomplished by adjusting the respective decision levels DON02/4 and DSNOZ/4 so that the error

= 1} for the reverse transmission (a1 =1, a
probabilities Peo(Do) and PeS(DS) are equal. Then with the suboptimum processing the probability
of mistaking "on" in the first channel and "off" in the second for its converse is generally greater
(and is never less) than that with optimum processing [i.e., Pes(—DS) > P;(—Do), the k-interchange
argument used earlier on (dzo - df) also being valid for the suboptimum detection]. It follows
that in binary symmetric signaling with Do =0= Ds' the (now single) error probability for the
suboptimum processing generally exceeds that for the optimum processing [PeS(O) > P;(O)].

The statements made in the preceding two paragraphs are a direct consequence of what is
meant by error-optimum processing, to which statistical detection (or decision) theory is ad-
dressed,7'8 and will not be proven here.

In assessing the loss in system performance that occurs in favoring the suboptimum, SNR-
maximizing processing for its relative engineering convenience, a measure that is reasonable
from an engineering standpoint is the decrease in transmission amplitude that will degrade the
error performance for optimum reception to that obtained with the suboptimum processing and
the original amplitude. We restrict our attention solely to changes in transmission amplitude
because, in general, the {[Jj} that specify the error probabilities through (2.25), (2.27), and
(2.29) depend in complicated ways [see (2.3}-(2.4)] on the transmission and channel scattering
function. In shrinking the amplitude, we at least know by (2.4} that the {p.} will all be reduced
by the same factor as is the square of the average amplitude, or the transmitted energy. This
is essentially a conservative policy, moreover, there may well be restrictions on the bandwidth
of the transmission or other waveshape limitations that must be observed — it is likelv that such

constraints will still be satisfied in the amplitude reduction.
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From the earlier observation, made in connection with (2.11), that the suboptimum process-
ing approaches optimality as Bo, the largest of the Bj' approaches zero, we may expect the loss
in system performance caused by suboptimum processing to decrease with Bo. In agreement
with this expectation, we shall now prove that the loss never exceeds 10 log10 (1 + Bo) decibels
in equivalent transmission reduction, either for radar or binary communications. Because of
the complicated way in which the error probabilities depend on the {8.}, one cannot in general
hope for more than an upper bound to the loss; even if the loss could Jbe assessed precisely, it
would depend in detail on all the {Bj}, and would no doubt be a very unwieldy exprcssion.

To obtain the above bound, let us imagine a new, "clairvoyant" receiver containing a pair
of processors that, like (2.1) and (2.11), have for their outputs sums involving the squared ob-

servables w.

jkt’ L

k2’

2 2
Aj(i + Bj) (wjki + ijZ) .

o0
dkc= b k=1,2 (3.1)

:]:

o

where these observables are obtained from the received signals wi(t), wZ(t) through (2.2). This
receiver is termed clairvoyant in that, as indicated in (3.1), it is assumed to know the values

of ay and a, and hence to know what transmission has taken place. However, this information
(©

is not used directly in making the decision; rather, decision is bascd on the values of d1

dzc in the same way that it is for the optimum and the suboptimum, SNR-maximizing processor

outputs.

and

Referring to (2.11), we see that when a = 1, dlf = dks, and that when a = 0, dl:: >dks, for
any received signal wk(t) that is simultaneously supplied to the clairvoyant and suboptimum re-
ceivers. In radar, therefore, both receivers will have the same miss probability for the same
decision-level setting, whereas the clairvoyant receiver will have a false-alarm probability that
is no less than that of the suboptimum receiver.

By the same token, when a, = 1, a, = 0 in binary communications, the deciding difference

(dZC - dic) for clairvoyant receptzion is n:aver larger, for given wi(t), wz(t), than that for the
suboptimum processing (dZS - dis). Thus for any given common setting of the decision level,
positive or negative, the suboptimum receiver has no higher an error probability than the
clairvoyant. We conclude that both for radar and for binary communications, the suboptimum
receiver cannot be outperformed by the clairvoyant receiver, and we turn our attention to the

performance of the latter.

. 2 2 . : ;
Recalling that the sum (wjki + w.kz) can be written (akkj + NO/Z) ij’ with the {vjk} as in
(2.21), and multiplying (3.1) by 4/N§, we find upon examining the ay = 1 and ay = 0 cases sep-

arately that (3.1) is identical to (2.21), except for having g.(1 + Bj)/(i + Bo) substituted for Bj in
(2.21) and the result multiplied by (1 + Bg)- Thus the error probabilities for the clairvoyant re-
ceiver are identical to those obtained with optimum reception in a new system having, in lieu of
the noise-scaled eigenvalues {Bj}, the reduced eigenvalues {Bj(i + Bj)/(i + Bo)}, and having the
decision level set at (1 + Bo) times that of the clairvoyant receiver in the original system.

We have thus shown, by means of the clairvoyant receiver as a "bridge," that for given
transmission and channels the suboptimum receiver is no worse in error performance than is
optimum reception in a new system whose eigenvalues (signaling energies in the observables

{wjki}’ {wjkz}) are reduced.
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Two gaps remain in the development of the loss bound. First, the eigenvalues are in general
not uniformly reduced in the new system relative to the original, since the ratio (1 + B y/(1 + 8 )
varies unless all the {ﬁJ} are equal. As explained earlier, in seeking a new, optlrnum processing
system that is outperformed by the suboptimum processing in the original system, we want the
eigenvalues of the new system to be uniformly reduced so that the new transmission will simply
be the original one reduced in amplitude. We therefore introduce yet another new system in
which the {Bj} of the original system are even further reduced,T but now uniformly, to {Bj/(i + Bo)},
and next need to prove that the error performance of optimum reception in this latest system is
no better than that of optimum reception in the system having the {B.(1 + B y/(1 +8 )} The proof
is left to Appendix B, where the sensible result? is obtained that forJ' optlmurn reception the error
performance is never improved by decreasing any one of the 3. when the other {Bj} are arbitrary
but held fixed. This proof establishes that in a given spread-channel radar or binary communi-
cation system of the kind considered in this report, the receiver error performance for the sub-
optimum, SNR-maximizing processing is at least as good as that for optimum reception, provided
that the waveform transmitted to the optimum receiver is (1 + Bo)_i/z times that sent to the sub-
optimum receiver.

With optimum processing and the original amplitude, the error performance can be no worse
than with suboptimum processing; thus the error performance of the SNR-maximizing receiver
is bracketed between that for optimum processing with the original, full amplitude and that for
optimum processing after the (1 + Bo)-i/z amplitude reduction. Rather than bounding the sub-
optimum error performance, however, we want to set limits on the effective transmission loss
that attends SNR-maximizing reception at a given level of error performance. This second of
the two gaps previously mentioned is closed again with the help of Appendix B, where it is shown
that just as optimum-reception error performance is never improved by decreasing the {8.}, it
is likewise never worsened by increasing them. Remembering that the {8.} are proportional to
the square of transmission amplitude, and assuming that there is some ¢ for which the optimum
receiver, operating with the transmission amplitude reduced by the factor e_i/z, has the same
error performance as that for the suboptimum processing with the full amplitude, we can there-
by demonstrate that ¢ must lie in the range [1, (1 + [30)-1]. The loss attending SNR-maximizing

processing therefore lies between zero and 10 log10 (1 + Bo) decibels.

B. Test of the Bound in Two Binary Communication Systems

The argument just concluded has established, for any spread-channel radar or binary com-
munication system of the type considered, that 10 log10 (1 + Bo) is an upper bound to the maximum
decibel loss in transmitted amplitude that is suffered in effect when the suboptimum processing
(2.11) is used in lieu of the generally more difficult optimum processing (2.1). A key part of the

argument involved the introduction of a clairvoyant receiver whose response to any observable

T Anather choice is ta reduce the {[3(1 + [3)/(1 + [30) ta {[3([3 ; /[30 , where [3 is the minimum [3 This leads

ta 10 |cg]0([30/[3mm) decibels os on oddmoncl upper bound on the moximum equwclent transmissian reduchon
associated with subaptimum, SNR-maximizing pracessing. Far spread channels the greatest lawer baund of
the {B.} is generally zera, so that this result is of limited utility.

$ With the subaptimum, SNR-maximizing pracessing, hawever, decreasing an eigenvalue can actually imprave
the receiver errar perfarmance — see the discussion follawing (3. 11).
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w of the received signals is individually compared with that of the suboptimum receiver. Such

103;; completely ignores the relative importance of the various observables in contributing to
overall receiver performance; we may therefore expect the cited upper bound to be rather
conservative.

In order to see how loose this bound may be in particular cases, and hopefully to aid future
efforts to obtain a tighter but still universal bound that involves only the largest noise-scaled
eigenvalue BO’ we have analyzed two particular communication systems. Both systems are
binary symmetric, the decision level being set at zero. System I has just two pairs of noise-
scaled eigenvalues, of values BO and Bi = yBO, 0 £ v< 1, and is more typical of discrete diversity

Tietle than of communication over spread channels, since the latter generally

communication
involves a countably infinite set of eigenvalues.

System 2 better fits a spread-channel situation, but is somewhat nonphysical in that it is the
limit, as N - =, of a system having a finite number N of pairs of noise-scaled eigenvalues, the
largest pair having value BO and the remainder all being equal to '\/p—/ﬁ In the limit, the re-
mainder eigenvalues are all properly smaller than BO, no matter what the system parameters
By and p may be. On the other hand, the total average signaling energy becomes infinite, being
proportional to BO + (N —1) m this does not upset the validity of the present analysis,
however.'

In either of these communication systems, the receiver bases its decision on the sign of

the quantity

N-1
do = [xo‘wozu # W) b aXy ] (Wj221 i szzz)]
i=1
N-1
- [XO(WOZM i wgiz) * aT1 ) (szu e sziz)] (3.2)

i=1

where ’XO = 60N0/2 in both systems, fi = yBONO/Z and N = 2 in System 1, and Xi (NO/Z) \/p_/ﬁ
while N = » in System 2. The first bracketed term in (3.2) is supplied by the processor operat-
ing from the second channel, and the second is generated by the other processor. Adjustment
of the processing parameter a permits us to obtain the suboptimum processing (2.11) when

a = 1, and (except for an irrelevant gain factor) the optimum processing when « = (1 + BO)/

(1 + Zfi/No). In the same fashion as (2.29) was obtained from (2.24), infinite integrals can be
obtained for the respective error probabilities yPe(oz, BO) and pPe(a, BO) for Systems 1 and 2,
with reception as in (3.2). Evaluation of the integrals, where a Gaussian limit is involved in the

second system for N — «, yields the rather complicated expressions

t System 2 falls in o closs considered by Héiek]9’20 ond Middlefon,m where the expression (2. 1) for the optimum
processing fails to converge, ond yet the likelihood rotio (A-8) is finite positive. Here on optimum receiver
exists in principle, but not in the form (2. 1), and it hos nonzero probobility of error [see (3.4)]. Like (2.1),

the expression (2. 11) for the suboptimum processing alsa fails ta converge; sa daes (3.2), which includes bath
(2.1) and (2. 11). Therefore the results to be obtoined for System 2 should not be viewed os octuolly ottoinoble,
but con be opproached in a physicol system os closely as one moy desire.
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2
(1 +Bg)(2 + vBy) + (a)® (1 + ¥80) (2 + By) + (av) (2 + By) (2 + vBy)
P_(a, ) = ’ ° 2 ° ° E 63

YE (2+ﬁ0) (2+yﬁ0)(1+ay+B0)(1+ay+ay2[30)
and
2
(1 +8,) (a + B4+ By)
1 0 0" Po
P_(a,By) = 5> [1 —erf(Np/4)] — 555~ exp [pa ——]
ple o/~ 2 2(2 + B.) D
0 (By + By)
explpaB. Xa — B,
2 2. -1 0 0
x {1 —ert(Np/4 (2a + By + By) (By + By) I} + 202 + By)
x {t —erf(No/4 8 (2e — By)1} (3.4)
where
X 2
erfx =—2—5‘ et oat . (3.5)
N7 Yo

For the suboptimum processing, « = 1, and for optimum processing, yielding the minimum
P (@, By) or pPe(a,BO), o= {1+ 30)/(1 +vBy) in System 1 and @ = (1 + B) in System 2.

To learn the loss due to suboptimum processing in System 1 at given values of BO and v,

y

one sets o = 1 in (3.3), notes the error probability, and then sets o = (1 + BO)/(i + yBO), sub-
stitutes erﬁo for BO, and finds the value of & that yields the same error probability. The ef-
fective transmission amplitude loss attending the suboptimum processing is then 10 log10 goe
Likewise, one determines the loss in System 2 at given Bo and p by determining P (1 BO) from
(3.4), substituting € BO and € p for BO and p, respectively, in (3.4) and finding for what 8 the
error probability pPe(i + BO, BO) is the same. (The substitution of efp for p is based on the
fact that p is proportional to the squared value of the remainder eigenvalues; also, « = 1 + ,30
for optimum reception in System 2, since these eigenvalues, while not zero, are individually
negligible.)

Although exact solution for Gy is a matter of trial and error, some insight can be had by
examining the behavior of the error probability for 8, near zero and for B, asymptotically large.
After expanding (3.3) about BO = 0 to terms of order B03, we find that the loss for System 1 be-
haves as

-1 2 1—vy.2 -1 -2,-1
LHBY (T2 (1 +y7 +979)
Y
By™0

(3.6)

The coefficient multiplying BOZ has maximum value (in the range 0 < vy < 1) equal to 0.04193 at
v = 0.35. At the other extreme, if we let BO increase so that both BO >> 1 and yBO > 1, still
with 0 € y < 1, we find

=
€
r

\ﬁy/B») (1 v+ 7+ (3.7)
By~

and the value of y that maximizes €r—1 for a given large B is, asymptotically, v = ﬂo_i/z. With

v thus set, we find
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ot — (5"
By~

Equations (3.6) and (3.8) show that the bound (1 + BO) that has been established for er-1 grows
progressively more conservative as By ™ 0 or By ==, at least for this particular communication
system. The ratio [30/(er-1 — 1), which is a measure of the tightness of the bound, has a minimum
value of about 68, obtained for BO around 5 to 6 and y about 0.2.

An incidental result is

(y = 1)°
5z + By (T ¥ By

-1 2
€ — 1 +BO
y=1

(3.9)

Equations (3.6) and (3.9) suggest that (1 + BOZ) may bound er-1 when BO <1and 0 < y< 1. Numer-
ical checks made at selected points in this (BO, v) region support this conjecture although no
proof is yet available for System 1, let alone for all radar and communication systems.

For System 2, expansion of (3.4) about BO = 0 to terms of order Bg’ and p?’/2 shows that

-1 2
€. 1+Bon

B (1 —erfq) + n2/Nm) e

(3.10)

=12 =4 -nz
412+n )4 —erfn) —n (2/Nm) e
2

where 5 = N/;/Bo. The coefficient multiplying BOZ in (3.10) has a maximum value of 0.0995, which
is achieved at n = 0.94. This compares with a maximum coefficient of 0.0193 for System 1.

Ifn-= N/F/Bo is held constant and By is made large, we find, by studying the exponential error
compression that takes place in (3.4), that

-1 o

€ Bo—_wo’ 5 (3.11)
regardless of the value of . Comparing (3.11) with (3.8), we see that the System 2 is superior

to System 1 in testing the bound at high 8, as well as at low. In fact, the ratio BO/(er-1 = 1
reaches as low as 13.3 at BO =5, p =16, compared to the minimum value of about 68 for System 1.
We conclude that any universal upper bound to the loss that is of the form 10 log10 (1 + kBO)

cannot have k less than 0.075.

F'inally, it may be noted by setting @ = 1 in (3.4) that when p is large and Bo exceeds 2, in-
creasing By can actually increase the error probability. Thus, the reasonable notion proven in
Appendix B, that increasing any one of the eigenvalues cannot cause degradation in the error
performance for optimum reception, certainly is not true of reception using the suboptimum,

SNR-maximizing processing.

IV. ERROR PROBABILITY RELATED TO MAXIMIZED OUTPUT SNR
FOR BINARY SYMMETRIC COMMUNICATIONS

A. Preliminary Remarks

We have shown in Sec. III that if the largest noise-scaled eigenvalue BO is small compared
to unity, little effective loss in transmission amplitude is suffered in a spread-channel radar or
communication system when reception employs the explicit, but generally suboptimum, SNR-

maximizing processor (2.11) in lieu of the implicit, error-optimum one (2.1). This result
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confirms processor output SNR as a legitimate receiver design criterion when BO << 1, but does
not make use of the actual value of output SNR attained by the SNR-maximizing processing. Since
|as shown in (2.20)] this maximum value R is just as explicit as the receiver that yields it, one
would hope that it could be related to error performance, so that output SNR could be used as

a convenient overall system performance criterion and thereby guide transmission design as

well as receiver synthesis.

The results of this section fulfill this hope within the context of binary symmetric communi-
cations. For such systems we develop bounds on the error probability for optimum reception,
bounds that for any particular transmission~channel combination involve only Bo and the output
SNR R of the SNR-maximizing processing. Through the decibel-loss bound log10 (1 + Bo) already
established for maximum-SNR reception, we can then bound the overall effective loss attending
maximum-SNR design by a function involving only the maximum output SNR Rm available under
the system constraints and BOm’ the associated maximum-R value of Bo.

By using these results one can show, for example, that when BO < 0.1, the error probability
for the optimum receiver is given by a simple monotonically decreasing function of cZR, where
¢ lies between 0.844 and 1.0, and that when Bom < 0.1 the overall "design loss" associated with
maximum-SNR transmission and reception is less than 1.2db. 1f in addition to the condition
Bom € 0.1, interest is confined to situations in which the error probability for either receiver
is less than 0.01, the design loss will be less than 0.9db; even small design-loss bounds are
met with yet lower BOm and error probability.

With regard to the foregoing, let us define "design loss" more explicitly than was done at
the end of Sec.1-A, where the term was first introduced. Suppose that in a spread-channel,
binary symmetric communication system one is somehow able to find, within specified con-
straints, the transmission that minimizes the error probability for optimum reception. Then
this transmitter-receiver combination yields the minimum error probability that is attainable
for the given channel under the specified constraints, and transmitter-receiver design for maxi-
mum output SNR can lead to no better error performance. 1f, however, the "design loss" is
known to be less than M db, then one can be sure that the error performance obtained with
maximum-SNR design is at least as good as that resulting from minimum-error design, if the
latter is made to suffer the handicap of an M-db reduction in transmission amplitude..‘r

No design-loss or error-probability bounds have yet been obtained for binary communications
in which the decision level is nonzero. For radar, we do have the rather weak but quite general
bounds:¥
(P; +pPl

)
M’
> ;Pé’ (4.1)

t Equatian (2.1) indicates that in order ta maintain aptimum receptian, a readjustment af the pracessing is gen-
erally required after such an amplitude reduction [unlike the maximum-SNR processing (2.11)]; in the absence
af such readjustment the errar perfarmance of the handicapped design can be even warse.

i These baunds resulted from discussians with Drs. R.S. Kennedy and B. Reiffen af Lincaln Labaratary.

19



which loosely relate radar system performance to that of a binary symmetric communication
system.)r Here Pe is the error probability for any binary symmetric communication system that
uses dual, statistically independent and identical channels and identical channel processors,
where the sign of the processor output difference determines the binary decision. The quantities
P.and P

F M
level Dr in a radar system that is identical to the given communication system except for the

are the false-alarm and miss probabilities, respectively, for any given decision

absence of one channel and its processor., We note that when attention is confined to error-
optimum processing, as indicated by the "o" superscripts, an improved lower bound is available
for the sum of the radar error probabilities. This third bound in (4.1) is the simplest to estab-
lish, for it merely affirms that min (Pg + PISI)/Z, the lowest error probability attainable when

r
a binary symmetric communication system is hampered by the removal of one of the channel

outputs from its receiver input, cannot be less than P;, the lowest error probability attainable
with this output restored.

The first bound in (4.1) is obtained by noting that PFPM is the probability that the output of
the processor that receives noise alone exceeds Dr’ while at the same time the output of the
other processor falls below Dr even though signaling energy reaches it. This joint event implies
that the output difference has such a sign that an crror is produced in the communication situa-
P
ability of the joint event. Similar reasoning for the contrary joint event leads to (1 — PF) (1-—P

tion; hence the probability Pe of communication error is at least as great as P the prob-

IV[)‘

and hence (1 — P being upper-bounded by (1 — Pe); this yields the second bound in (4.1).

r~ Fm
We now develop the earlier-mentioned error bounds for spread-channel, binary symmetric
communication, first obtaining from them the cited design-loss bounds. We then show in Sec.

IV-C, as an incidental result, that in some circumstances tight error bounds can be achijeved.

B. Analysis for Decibel-Loss Bounds

IEquation (2.29), with the decision levcl DNOZ/4 set at zero, gives the error probability for
optimum reception in spread-channel, binary symmetric communications. Noting the even and
odd symmetry of the real and imaginary parts, respectively, of the integrand in (2.29) after it

has been rationalized, we have
B 0)=F B. G B 4.2

where

T Fram (4.1) and (4. 11) we abtain the baund far aptimum spread-channel radar receptian and any decisian level
(and hence far any radar receiver as well):

P:+ P;:‘ >1 —erf VR/4

It is believed that this baund remains valid when tightened by the replacement af R/4 with R/8. (There wauld be
no question, were the receiver output Gaussianly distributed, with the same variance for echo presence as far

its absence.) Appendix C autlines a derivatian af the impraved bound, which calls an a thearem (interesting in
bath a statistical and a circuit-theory context) thot is as yet apparently unpraven but that seems to be true.
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o0

B.y\-2
Fggh = T (144 (1 + ) (4.3)

J=0

00

i /2 BJ. tan©6y2711-1
G({Bj}) = = §o de .HO [1 + (_mJ_) ] (4.4)
J:

and where the transformation 2p = tan € has been made.

The terms in (4.3) have the bounds

B-Z B.\~2 3.2 B.\-2
exp ——43— <1 +Bj) (1+2—~‘) < exp —4—3 (1+TJ) . (4.5)

This can be verified by observing that (4.5) is true for BJ. = 0, and then by finding that the logarith-
mic derivatives of the quantities in (4.5), taken with respect to Bj, rank as in (4.5) for BJ. 20

Thus, since ﬁj < ﬁO’

B\-2
exp l—%] < F({Bj}) < exp[—% (1 i —20> ] (4.6)

where

o
L 8! (4.7)
j=0
is, by (2.20), the maximized processor output SNR.

Equation (4.4) likewise can be bounded in terms of BO and R. First we note that each term
of the product in (4.4) can be upper-bounded using

1 +xX<$€

and that the product itself certainly exceeds unity by the sum of the ratios that appear in the tcrms.

Thu55
n/2 n/2
%§ exp[~S tanzeldesG({Bj})\\‘%g\ do (1 + S tan? 0) 7" (4.8)
0 Yo
where
* B. \2
§= ) (z_J-+/3.) : (4.9)
j=0 :
An individual term in (4.9) has the bounds B /4 [B /(2 + BO)] so that by (4.7), S lies bctween

R/4 and (R/4) (1 + /30/2) 2; evaluatmg the mtegrals in (4.8) and employing these bounds on S

B2 |4
%eR/“(1—erfj§)sc({ﬁj})s[z+z/%(1 +—29) ] (4.10)

where the error function is defined in (3.5). Multiplying (4.6) by (4.10), the error probability

we have

of the optimum receiver is found to be bounded as
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= exp [—(R/4) (1 + 8,/2) %]
11 —ert J%)gP:(O)s 0 . (4.11)

21+ \/(R/4) (1 +8,/2)72)

The right member of (4.11) can be written

e
m = 5 {t —erf[G,/k(G ]} (4.12)

where Gly = NR/4/(1 + BO/Z), and there is a unique solution for« (G,). Some selected values of
K(Gi) are given in Table 1.7

TABLE |
G = VR/4 0 0.2786 | 0.3691 [ 0.5467 | 1.061 [2.061 |[3.053 |4.046 |
1 Q +;30 2)
2
lim =\/—
() G0 VT 1.1145 | 1.1074 | 1.0934 | 1.0613 | 1.0303 | 1.0177 [1.0115] |
=1,1284

Equations (4.11)-(4.12) effectively bound the error probability for optimum reception to
within 10 log, ,{(1 + 8,/2) «[NR/4/(1 + B,/2))} decibels. Applying (4.11)-(4.12) to obtain a bound
on the loss associated with maximum-SNR design of a binary symmetric signaling system, we
recall from Sec. IIl that the error probability PeS(O) for SNR-maximizing reception will not ex-
ceed that for optimum reception if the latter is given the handicap of a 10 1og10 (1 + BO) decibel
reduction in transmission amplitude. Dividing both BO and VR by (1 + BO) accordingly, it follows
that PeS(O) is upper-bounded by the right member of (4.12) with (1 + 3[30/2) replacing (1 + BO/Z)
in Gi' where R is the maximum output SNR Rm attainable under the system constraints, and
BO has the value BOm attending the SNR maximization.

Turning now to minimum-error design, there is a transmission that yields an error prob-
ability P:(O)min that is the minimum attainable under the system constraints and that with SNR-
maximizing reception would provide some output SNR R
left member of (4.11) with R = RminP'
by 10 1og10{(1 + 3BOm/2) K[W/(i + 3BOm/2)]} decibels while the receiver is kept optimum,
the resulting Peo(O) will, by the argument of the preceding paragraph, be at least as great as

o
minpP* Pe (0)min cannot be less than the
Thus if this minimum-error transmission is reduced

the error probability PeS(O) obtained with maximum-SNR design and no transmission-amplitude

handicap. [Here we have used the monotonicity of the left member of (4.11) together with the

fact that R__ > R _. .] This establishes that the design loss associated with the use of the SNR
m minP

criterion cannot exceed 10 logio{(i + 3BOm/2) [ /Rm/4/(1 + 3[30m/2)]} decibels. The examples

cited in the preliminaries to this section are obtained from this bound and the one given at the

beginning of the preceding paragraph, together with reference to (4.11) and Table I,

le\lote that R and [30 in G| cannot in general be independently specified, since by (4.7) R cannot be less than

pe.
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C. Analysis for Tight Error-Probability Bounds

In eertain situations it is possible to have error-probability bounds that are quite tight in
the usual sense, rather than as measured indireetly, by an effective decibel difference in trans-
mission amplitude. Such special situations exist when ﬁo is small not only eompared to unity
but to R_i, the reeiprocal of the maximized output SNR, and where in addition this SNR is unity
or higher.

Under these circumstances, we can return to G({8.}) of (4.4) and obtain for it a tighter upper
bound than that of (4.10). The bound is established through a partial expansion of the product in
(4.4), leading to the inequality

© 2 2
B.x \2 . 4.2 8 63 36
il 11‘(_-1.”+ )]>1+xs+<x2 )[1— s| + 5 |1 - - 5
= j S(2 + By) S(2 +8,)
7
38 4 6
o T R B

where R and S are given by (4.7) and (4.9), respectively, and T2 = (R/2) (1 + ﬁO/Z)-Z. (Bounds
involving higher powers of V eould be obtained if so desired.)

Substituting (4.13) in (4.4) and evaluating the integral, we find

6ﬁ02 ! 1-0.328058V -0 259672V2+0 156838V3+0 124144V4
Gdph < {2- § : - : :

R 1+0.791542V —0,373462V>—0. 295611V> +0.266012V2 +0.210560V°

2\ -1
68 By -2 B\ -2
<1'°45°3<2_T0> exp[% <1+—§) ][1_erf/% (1+70) ] ;
for g, < 5 (4.14)

where the higher upper bound, whieh was established numerieally, beeomes an equality as

(R/4) (1 + ;’30/2)_2 approaches infinity. Replacement of the upper bound in (4.10) by the right

member of (4.14) leads to a similar change in the upper bound of (4.11), and we now have

Sl
38 G2
% [1 — ert /% ]§ P2(0) < o.523<1 - T()) [1 —iERE /% (1 + —20) ] . (4.15)

The final step is eoneerned with the ratio of the two bracketed terms in (4.15). We develop
the bounds, using (3.5),

= 2
1 —erfa + (2/Nm) f e dt 5
je Lomrf @) _ a-b G (2/NT) b exp[—(a —b)
B 1 —erfa 1 —erfa N 1—erfa
2b 2
<1+ (=) (1 +avm exp[2ab—Db“] ; O0<bga . (4.16)
Nm
Here Pierce's bound5
2
e 2
1—erfa>/—'_— 0 az0 (4.17)
1+anNm
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has been used. To apply (4.16) we set a = NR/4, a—b = \/(R/4) 1+ BO/Z)_Z, and find that

B
O\<b\<—20\/E4 . (4.18)

Since BO will certainly be less than 2 for weak-signal conditions, the condition 0 < b < a on (4.16)

is satisfied, and we have

-2

1 —erf (R/4) (1 +8,./2) B

1< J o \<1+TO(%+/%)exp
1 —erfNR/4

R, (1 + 80/4)]

4(1 +8y/2)°

B.R
1 R 0
<1 +z (BBO 2 +BO) PXP[T] (4.19)
where the inequality (R/2) + NR/2 < [3(R/2) + 1]/2 has been employed.
Taking the ratio r of the upper bound in (4.15) to the lower bound and using (4.19),
3\ R gt
1<T<1.05{1~ o 1+0.25038, 5 +B,) exp|—— (4.20)

and we can therefore determine the optimum-reception error probability to within £2.5 percent
if BOR << 1 and R > 1. This also proves to be true for the suboptimum, SNR-maximizing recep-

tion under the same conditions when one applies the receiving-loss bound 10 log,o (1 +8) decibels.

V. CONCLUSIONS

This study has been primarily concerned with confirming that under frequently met spread-
channel conditions, one can safely employ a receiver output-SNR system design criterion
(specified in Sec.II-B), even though error-probability optimization is the actual goal. In contrast
to error-probability criteria, which lead to having to solve an integral equation (A-10) for the
optimum receiver and to even more difficult problems in finding the best transmission, this out-
put SNR is notable for its mathematical simplicity, and for its consequent attractiveness in
engineering terms.

A condition under which overall system design may properly be based on maximizing the
processor output SNR at the receiver, is that there in a sense be a small channel SNR. This is
a "low energy-coherence" (ILEC) condition that by no means need imply small output SNR (poor
system performance). Specifically, we have shown that the maximum output SNR R is the sum
of the squared, noise-scaled eigenvalues (or coordinate signaling energies) {Bj} = {Z'X'J./NO} (where

NO is the noise spectral density), while BO = max f. is an index of the maximum "design loss"

sustained in employing the SNR criterion. ("Design loss" is defined as the reduction in amplitude
of the transmission, keeping its waveshape unchanged, that lowers the best error performance
attainable under given system constraints to that obtained using maximum-SNR transmission
and receiver design under the same constraints.) Since we need only be sure that /30 is small,
however, all that is really required is a good upper bound to By in terms of readily determined
quantities. Such bounds are given in Refs. 2 and 4, among them being the LL1C bound (2.5) and
the spread-channel bound (2.7).

Section III establishes that the portion of the design loss that can be attributed to the use of

a SNR-maximizing receiver is, for a given but arbitrary error performance, no greater than
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10 1og10 (1 + BO) decibels, this being true for a wide variet}sr of radar and binary communication
systems. Section IV shows, with the aid of Pierce's work,” that for the class of spread-channel,
binary symmetric communication systems, extension of the output-SNR criterion to the design
of the transmission as well as of the receiver, results in an overall design loss not exceeding

10 1og10{(1 + 330m/2) K[thrrl_ﬁl/(i + 3BOm/2)]} decibels. Here x(G,) is less than 2/~ and
approaches unity as G1 increases (error probability decreases), Rm is the maximum output SNR
attainable under the system constraints, and BOm is the attendant maximum-SNR value of BO.

These design-loss bounds are the main results, but there are a few incidental findings.
Section II demonstrates, for example, that among a broad class of mixed linear-quadratic re-
ceiving processors, the processor that attains maximum output SNR corresponds to the asymp-
totic, NO — «, solution of the integral equation (A-10) for optimum processing. Another result
forms part of the development of the receiving-loss bound 10 1og10 (1 + BO) decibels, where it
has been necessary to prove (in Appendix B) the notion that with error-optimum reception, in-
creasing or decreasing any or all of the noise-scaled coordinate signaling energies {8.} cannot,
respectively, worsen or better the error performance. This notion is not true of the suboptimum,
SNR-maximizing reception, however, as is shown by the performance of a particular communi-
cation system analyzed in Sec. III-B.

Under the more stringent conditions that BO be small compared to R_i, the reciprocal of
the maximized output SNR, while this SNR also is at least unity, it has been possible (in Sec.
IV-C) to obtain error-probability bounds for binary symmetric communication that are tight to
within £2.5 percent. Under general LEC conditions, however, the error-probability bounds will
be loose in the normal sense although good in terms of bounding the design loss quite tightly.

In establishing the design-loss bounds we have confined our attention to radar, or equivalently
to on-off binary communications, or to binary communication systems that use a pair of identical,
statistically independent channels with the same waveform transmitted over either channel. Al-
though the channels in this study have been assumed to be describable in terms of scattering
functions [see the discussion associated with (1.1)], this is not an essential restriction. All that
is actually required for the cited loss bounds is that the signal received in the absence of the
white channel noise be narrow-band Gaussian (having the same statistics when received over
either channel in the case of dual-channel binary communications) with correlation function (pz(t, T).
The largest eigenvalue Ag = NOﬁO/Z is then that of the integral equation (A-2), and (2.5) remains
as a general upper bound to BO. It even seems likely that the narrow-band assumption is not
necessary, although many of the equations would have to be reworked for single rather than
paired eigenvalues.

The two particular communication systems examined in Sec. III-B show that the receiving-
loss bound 10 1og10 (I BO) may possibly be tightenedT to 10 1og10 (e 302) for Bos 1 and to
10 log (1 + \/'B_S) for Boz 1, but that if a bound of the form 10 1og10 (1 + kBO) is retained, k must
be at least 0.075. It would be rewarding to find minimum universal design-loss bounds as func-
tions of 8, and R, or failing that, at least to see how improvement may be made in the bounds
presented here. Extension of loss-bound analysis from binary to M-ary communications would
also be worth while.

Finally, since in practical systems there will usually be some inaccuracy in realizing the
SNR-maximizing receiver, useful studies might be made of the degradation in error performance

caused by such receiver mismatch.

1 Some recent ond unpublished work of Dr. R. S. Kennedy olso suggests that the receiving loss moy not exceed
5 logjg (1 + By) decibels.
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APPENDIX A
DERIVATION OF PROCESSOR OUTPUT FOR THE OPTIMUM
RADAR RECEIVER

To form the ratio of the probability measure that the signal w(t), received over one of the
channels and observed in (- T/2, T/2), is a result of transmission through that channel, to the
probability measure that it arose from noise alone, we first need the zero-mean random-

variable "observables" {wj}:

/2
w, = S‘ w(t) $.{tydt ; j=0,1,2,... . (A-1)
-T/2 J
Here the {d‘j(t)} are the eigenfunctions (excluding the trivial one that is identically zero) of the
homogeneous linear integral equation involving the correlation function @t 1) of the fluetuating-
multipath perturbed transmission:
T/2 T T
S e 7). r)dr = APty L -5 <t <5 (A-2)
-T/2 J i)
The {Aj} are the associated eigenvalues and form a bounded eountable set. The eigenfunctions

can be arranged to be orthonormal:

T/2 0 ; j#k
{ P Ll N (A-3)
although they may not form a complete set. These properties of the {Aj} and {le(t)} follow” from
the fact that
T2 T/2
S‘S‘ 0 2(t, 1) dtdr < S‘S‘ g (1) o_(1,7) didr < (E)% <= (A-4)
I -T/2
and the assumed finiteness of the total average energy E—z received in (—=, «}. The inequality

in (A-4) is obtained from the eondition that the square of the the eorrelation coefficient,
wzz(t, T)/[q)z(t, t) wz(-r, t)], existing between z(t) and z(7r) eannot exceed unity. The eigenvalues
are also non-negative since wz(t, 7) is non-negative definite.9

Because the {le(t)} often do not form a complete set, especially one satisfactory for repre-

senting a process containing white noise, we have generally

8

Wity = wibi(t) # w(t) (A-5)

0

W

]
in (- T/2, T/2). Therefore, if we replace the received signal w(t) by the set {wj} as the input to

the receiver, we should also make available to the receiver the difference waveform wi(t) — Q(t);
by the equality in (A-5), w(t)} can then in principle be recreated from the new receiver inputs and
no information is lost. By the linearity of all the operations thus far involved and the Gaussian-
ness of w(t) under either hypothesis, the {wj} and the waveform w(t) — W(t) are jointly Gaussian.

Letting a = 0 represent the hypothesis that the received signal is solely a sample of noise of



spectral density No’ and letting a = 1 correspond to the other hypothesis, we find that the {wj}

are mutually independent under either hypothesis. This is so because they are uncorrelated:

T/2
Noé(t —T)
ijk = SS‘ zl)j(t) wk(‘r) [agoz(t, T) + ——2*] drdt
-T/2
i No) T/2 . ( N, S .
= (aAn +t S-T'/Z wj(t) wk(t) dt = a}\n s ) ij ; a=0,1 . (A-6)

Here (A-3) and (A-4) have been used. Furthermore, all the {wj‘* are independent of w(t) — \’A\/(t):

S 2 . T/2
w‘j [wi(t) — w(t}) S‘ LIJj(T) w(T) w(t) — Z d'k(t) g\ y w(T) w(o) ll'k(o) dof dr
2 %
k=0

J-T/ =SV
ks Nolt—-1) O N,
= S_T/Z Vi(m) |ag (t T+ S - i (a}\k + T) ¥, (t) ¥, (1) d7
k=0

( No No
a}\.+—) .t—(}\.+—> {t) =0
i+ 2wy s 2w
=05 5 250 5 - 2 ar=ul0, 7 s all t . (A-7)

In the abscnce of the additive white channel noise, w(t) is equal,iowith probability one, to Q-(t)
at any t, assuming that <pz(t, T} is continuous in t and 7. (This continuity assumption could be
violated, for example, by a process formed by sharply gating a stationary process, although it
will be satisfied by stationary processes themselves. As a reasonable engineering approximation
we henceforth assume that continuity holds.) Thus under either hypothesis, w(t) — \’w\/(t) is a
waveform generated solely by the noise and as such can contain no direct information about
whether or not there was a transmission over the channel; neither can it convey information
indirectly when taken in conjunction with the {Wj} because of the statistical independence just
shown.

We conclude by this plausibility ar'gumentJr that the optimum decision-making receiver need
only deal with the set of observables {wj}, and furthermore that, by virtue of their statistical
independence, the overall ratio of probability measures under the two hypotheses can be con-
structed by multiplying together the ratios for the individual w.. The zero-mean Gaussian
observable WJ having variance (a)\J + NO/Z) by (A-6), witha - 0 or 1 according to the hypothesis
selected, we find for log A, thc logarithm of the likelihood ratio formed on thc observation of

one of the two received signals in the interval (-T/2, T/2):

o0 0 2

ek e—2 W 1 1+_Zij_ 2 \W_ij_“_lj_

ogA=—-3 [/, log N N~ & N7 2%, (A-8)
j=0 2 © =0

1 It wauld be presumptuaus to call aur argument even “farmal," cansidering that the series far W(t) in (A-5) daes
not canverge! However, it appears certain that (A-8) is the carrect expression far the logarithm af the likelihaad
ratia in the wide variety af white-naise situations where both sums canverge separately.l9
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From the discussion preceding (2.1) of the main text, we arc allowed to add to (A-8) so that
its first right-hand term is canceled, and are permitted as well to then multiply the result by
Nj/Z, receiver optimality being unaffected. Thus the modified but still-optimum radar processor

reduces its input signal w(t), received in the observation interval {(-T/2, T/2), to the quadratic

form d°:
2 w
x.wj A (t) ¥.(7)
W = yg wit) w(r) | Y —LJ——l-1 I/, dtdr . (A-9)
: -T/2

Here we have referred to (A-1). To obtain an explicit expression for the infinite-series process-
ing kernel F(t, 7) that appears in the integrand of (A-9), one needs to solve thc generally difficult

inhomogeneous integral equation:

S‘T/z [2<pz(t, a)

N
o

sot—o)|Flo, do=g (b1 3 -4t , Tts4 . (A-10)
h —T/Z 2 2
As No—> « it can be seen from (A-10) that F(t, 1) —~ <pz(t, Tk

Turning now to the conscquences of the narrow-band character assumed for fluctuating-
multipath perturbed transmission, wec sec from (1.1) that <pz(t, T) is locally sinusoidal in t,
assuming that W, is high relative to the bandwidths of the transmission and the channel {luctua-
tions. Therefore by (A-2), the eigenfunctions {z,bj(t)} must likewise be locally sinusoidal with
angular frequency W Hence they are representable as d'J(t) N2 Re {d (t) e\p[lw t +ie]},
where O is an as yet unspecified real constant and z.b.(t) is a complex function whose variation
is slow relative to that of cxp[iwot] Substituting (1.1) and this representation for v, (t) into (A-2),
and remembering that 2 Re {A} Re {B} = Re {AB} + Re {AB*}, we have the cond1t1on

! . T2
I Re exp[lwot +10] S.g. Tt - VAT =) @ (u, A) Y (T)

, /2 fop
X exp [iw(t — 7)] dwdA| d7¢ + F Re jexp[iw t —i0] S. [g‘x it — )
O -T/Z o <

X Xt —A) @y(w, A) zj~r"]."‘(r) exp[iw(t — 1) — 2iw 7] dw d)\] dr

(A-11)

s ts

o=

= ~ : : . {0
= }\j Re {z,bj(t) exp [iw t 4 o)} , - 5
Under the assumed narrow-band conditions, the integrand of the second integral in (A-11)
oscillates so rapidly that the integral becomes negligible relative to the first integral. Thus a
sufficient condition for V2 Re {z,Tj(t) exp[iwt + i0]} to be an eigenfunction of (A-2) is that :7'2}.(1) be

an eigenfunction of the integral equation:

T/Z
[W At = 1) V7 =) & (w0, 1) expliw(t —7)] dwdA 4‘ (1) dr
T/Z
ol . T I
=) 3 —p St 5 (A-12)
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That (A-12) is also a necessary condition on 1'17(7) can be established by considering (A-11) at
two values of t spaced n/(Zwo) apart, and noting that the functions multiplying exp[iwot +10)
can change only negligibly in such a small time interval, again by the narrow-band assumption.

Thus far the value of © in the representation of the narrow-band {dzj(t)} has been left open;
we now see that any value of 6 will yield an eigenfunction wj(t) of (A-2) for a given solution ¢'j(t)
of (A-12). There are, however, just two linearly independent solutions of (A-2) for a given
dz (t). This can be seen by forming the two solutions through choosing a pair of values of 6 that
are 7/2 apart [(A-3) then being satisfied if, as usual, we neglect terms in e & ot ] and then finding
it impossible to introduce a third solution at a value of O that yields linear independence with
respect to the other two. We conclude that for each eigenvalue of (A-12) [counting each by the
number of linearly independent solutions Jj(t) that are associated with it] there will be a pair of
eigenvalues of (A-2), both equal to one-quarter the eigenvalue of (A-12). To avoid confusion
in indexing, we shall now denote the eigenvalues of (A-12) by {47\ } rather than {47\ }; those of
(A-2) then become {7\ } = {x 7\ 7\1, 7\1, 7‘2’ 7‘2’ A

Finally, we note that the complex kernel (p (t, 7) that multiplies dzJ(T) in (A-12) is Hermitian
symmetric: wz(t, T) = ~:(‘r, t). Since it is easﬂy established that this kernel is also non-negative
definite and (using the Schwarz inequality) square-integrable like wz(t, 7) in (A-4), its eigenvalues
form a bounded, countable and non-negative set, just as in (A-2).

Under these conditions the eigenfunctions {%(t)} can be arranged to be orthonormal9 [con-

sistent with the orthonormality of those of (A-2)]:

Y2
XT/Z P.(t) w (t) dt = 6Jk . (A-13)
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APPENDIX B
PROOF THAT FOR OPTIMUM RECEPTION THE ERROR PERFORMANCE
IS NEVER IMPROVED BY DECREASING THE NOISE-SCALED SYSTEM
EIGENVALUES B].

In this Appendix we first establish that if, for a spread-channel, optimum-reception radar
system, thcre is a decrease in any onc of the {Bj}, with the remainder of the {8.} arbitrary but
fixed, the false-alarm probability for a given but arbitrary miss probability will never decrease
(actually, it will in general increase). We then consider a dual-spread-channel, optimum-
rcception binary communication system operating with a fixed but arbitrary probability of mis-
taking the single transmission to have been sent over one channel for its actually having been
sent over the other. For this communieation system it is shown that a decrease in any one of
the Bj never produees any deerease in the probability for the opposite type of error. Because
of differences in system structure, it is necessary to consider the radar and communication
situations separately. The proof used for each system also demonstrates that error performance

is never worsened by increasing any of the ﬂj.

1. THE RADAR SYSTEM

With the decision level set at DN§/4 > 0, the miss and false-alarm probabilities for optimum
reception are given by (2.25) and (2.27), respectively. In order to hold the miss probability
P;/’I constant when there is a change in a particular /Bj, say Bn' D must be adjusted. For an
infinitesimal change d,3n in ﬁn, the required change in D is dD, and the ratio — db d/)‘n is found

by taking the ratio of the partial derivative of (2.25) with respect to /)‘n to that with respect to D:

0 -1 .
) . -1 -ipD
o 2 . I i (1—21;3-@] 2 T e
_db P/ __ calye ’ ! (B-1)
T o - = = :
n 9P, /oD foln a-2igm| P a
C1 j j

20

On the other hand, the incremental change in the false-alarm probability PI? that occurs when

B, is changed by dBn, but D is at the same time changed by dD to kcep the miss probability PIG

fixed, is given by

dp

o o] o] o]
o Pp hie P dPL/08, Y —_—
@, “'n’ @D Y8 n

L= dg_ + dD =
K 2P /oD L

T ary O o . . . pon ’ :
Since r)l’l:'dl) is clearly non-positive, the change in false-alarm probability will be non-negative
for a non-positive dﬁn if we can show that the bracketed expression in (B-2) is non-negative for
all values of [}n and D. From (2.27) we find

ipD

B3 =H!
: . =1
2o nm (1-2ig, 1 —-21 e d
op/on, le, [j_o ( BJM] (1 - 2if p) b

B = = (B-3)
/D a+8) fo [ mot - zwjm] e gy
il
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which is non-positive, since the integrals in (B-3) represent certain probability density functions.
Comparing (B-1) and (B-3), no Bn being negative, it is established that the bracketed expression
in (B-2) is always non-negative, and hence that the error performance can never be improved by

decreasing any (or all) Bj'

II. THE BINARY COMMUNICATION SYSTEM

Equation (2.29) gives the probability of wrongly judging that the comimunication transmission
has been sent over the first of the dual channels, when in fact it has been sent over the second.
Optimum detection is assumed, with the decision lcvel set at DNOZ/-}. The symmetry argument
preceding (2.24) shows that with this decision level the probability of making the opposite type
of error is also given by (2.29), but with —D substituted for D.

We study the behavior of P;(D) for PS(—D) held fixed as any selected Bn changes.T Parallel -
ing the radar proof, we find by taking partial derivatives of P;(D) and P;(—D) with respect to

Bn and D, and consolidating, that for the infinitesimal change dBn in Bn,

AP (D)) [48.(2 +8.)
50 - e n n
0= = [ oD ] [ LR ]

s

- -1 .
[(1 +8_/2)° +(Bnp)2] exp (- P du

n ’(1 +B-/2)2+(B-p)2]
j=0 J J

o I ) = (B3-4)
w© 2 2 inD
I 1+ 8./2) + (8, exp [— d
. lj=0 [( ;J/ ) (3JH) ” pl==%-]dp
when P;(—D) is held fixed. [In arriving at (B-4) we makc thc change p' = —pu in the integrals

rclated to P;(—D) and then drop the prime.]
Since apg(D)/aD, ﬁn, and the integrals in (B-4) are all non-ncgative, the latter because
thev are proportional to certain probability densities, it is established that the error perform-

ance is never improved by decreasing any of the ;'JJ.

T When D =0 in binary symmetric signaling, the twa errar prababilities are equal and are given by (2.29). In this
case separatian of the integral in (2.29) inta real and imaginary parts results in the latter vanishing; differentiatian
with respect to any B immediately establishes that the errar prabability is a nanincreasing functian of the B
(see Sec. Iv-B). "

n
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APPENDIX C
A CANDIDATE BOUND FOR RADAR ERROR PROBABILITY

As discussed in Sec.IV-A, we wish to show that for the sum of the two kinds of radar error

probability in optimum reception,

P§+P13[>1—erf /% (C-1)

at any decision level, where the output SNR R is given by the sum of the squared, noise-scaled

eigenvalues {8.} as in (4.7). By referring to (2.25) and (2.27), we find that PL + PO attains its

¥ M
minimum value Pmin when the decision level satisfies
o0
D=2log| ] (1+ Bj)] (C-2)
j=0
so that
o0
exp [—Zip. Z log(1 +B8.)| dp
P2+PC 2P . =1~ (am7? Tl d
F " PM ?Prmin ~ ) . L (C-3)
1 (=ip) (=ip—3) O (1 —2iB.p)
j=0 .

The derivative of Pmin with respect to the value of a Bk that is repeated K times in (C-3)

is
exp[—Zip Z log(1 +8.)| dp
9P hin _ K8, S‘ j=0 J (C-4)
SBk m(4 +Bk) C =3 '
1 (-2if B (- 2180
J:

Thus, if a K-fold eigenvalue Bk is incremented by dBk while a different eigenvalue Bl (that is not
considered multiple even if its value is duplicated) is simultaneously incremented by dBI =
_K(Bk/ﬁl) dBk so that R, the sum of the squared eigenvalues, remains fixed, the net change in

P in is given by

mi
—B,dB, (B, — B,) [1—2ip(1 +B, +8,)] exp [-2in {1 1og(1+3j) dp
dp - k"k'¢ k S‘ j=0 .
min ”(1+Bk)(1+31) c = .
1 (1-218) p) (1-2i8,p) 1 (1—2133.,1)
=0

As long as the (possibly multiple) eigenvalue Bk exceeds Bl’ and provided that the contour in-
tegral in (C-5) is always non-negative, a decrease in the eigenvalue By with a compensating, R-

preserving increase in [3[ will result in no net increase for P Hence if the eigenvalues are

min’
ranked in a nonincreasing order, we may first uniformly trade as many of the largest as may
exist against a single one of the next largest until equality is obtained within this set, then uni-
formly trade this new largest set against one of the new next-largest, and so on, while never
increasing P__ . nor altering R.
min

By following this procedure ad infinitum, we obtain (in a heuristic limit) an infinite number

of vanishingly small but equal eigenvalues. The Central Limit Theorem then guarantees the

Gaussianness of the optimum receiver output (2.21); it is also simple to show that by virtue of
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the eigenvalue smallness, the presence of an echo has negligible effect on the output variance.
In the limit, the minimum error probability is obtained with the decision level set halfway be-
tween the mean output for the echo present and that for the echo absent. From the definition of
the output SNR R as the ratio of the squared difference in means to the common output variance,
it then follows that the value of the minimum sum of error probabilities in the limiting situation
is given by the right member of (C-1). This establishes the bound.

For our argument to be valid, however, it is necessary that the value of the contour integral
in (C-5) be non-negative at every stage of the above procedure, and this is where the weakness
lies. The sign of the contribution made by that part of the integrand attributable to "1" in
[1—2ip(1 + Bk + ﬁl)] is certainly never negative, for (as in Appendix B) this contribution is the
value of a certain probability density taken at a particular level. Unfortunately, it appears
difficult to prove that the contribution of the remainder, attributable to —2ip(1 + ﬁk + Bl), is
likewise always non-negative. In a large number of special cases, however, this has been

found to be so without exception, provided that ﬁk is the largest (possibly multiple) eigenvalue,

just as in the above argument.
It may be noted that the remainder contribution under question in (C-5) is proportional to
o0

the derivative, taken at the level 2 Z log(1 + Bj), of the probability density of the sum of a set
ij=0
of central chi-square variates. FEach of these variates has two degrees of freedom and has a
Bj for the common variance of its Gaussian components; in the case of Bk, there is one more
variate than its multiplicity, and the same is true of ﬁ!' Since this repetition, as observed in
Ced

the denominator of the integrand in (C-5), does not occur in 'EO log (1 + ﬁj), it would suffice to
show that the maximum (unimodality can be assumed) in the gaforementioned probability density
(of "generalized chi-square" class) never occurs at a level less than twice the sum taken on
the {log(i + ﬁj)}, after the largest of this set has been excluded (or one of the largest, if there
is a multiplicity).

As a matter of fact, in all cases that we have examined, the peak has been observed to lie
at or above the similarly censored-and-doubled sum of the component variances {3.} themselves,
which implies a stronger lower bound than the logarithmic one, and even at or above the yet
stronger candidate bound formed by subtracting from the uncensored variance sum (i.e., the
output SNR R) the ratio of the uncensored sum of the {BJ.S} to the uncensored sum of the {sz},
and doubling the result. (Exact equality is met in these latter two bounds when there are a finite
number of 8., all of equal value.) There is an obvious circuit-theory parallel to these latter two

bounds, conjectured but thus far unproven, which may be stated as follows:

Theorem.

The (single) peak in the impulse response of an RC or RL ladder network
(i.e., all-real-pole)} can occur no sooner than the sum of the modal time-
constants less the ratio of the sum of their cubes to the sum of their squares,
or (should this not prove to be true) minus any one time constant that is not

exceeded by another.

No counterexample to either part of this theorem has been found after examining several trial
examples and making more than a dozen analog-computer tests (the latter with the kind assistance
of Dr. Harold K. Knudsen). Furthermore, the error-probability bound (C-1) that it supports

has been sustained in a number of radar cases that have been calculated exac::tly.1
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